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The problem of relationships between two approaches to living systems -— synergetics and
quantum mechanics — is discussed. Special attention is paid to the common methodological
aspects of these approaches based on the fundamental ideas of the modern phase transition
theory.
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The problem of entire stability of macroscopic systems is one of the crucial points in natural
science, being a subject of unremitting attention (see, for example, [1—9]). Stability of solids as an
evidence, was starting point in constructing of classical mechanics, both in justifying its
measurements (rigid rods) and in establishing the applicability limits of its theoretical principles
(reference systems). However, due to the high sensitivity of dynamical systems to variability of the
initial conditions, classical physics by itself was not able to substantiate the observed stability of
solids. That circumstance was recognized by the creators of quantum mechanics. At the same time,
the possibility of explaining (within the quantum mechanics framework) stability of solids, at least
on their elements’ level, was discovered.

Weisskopf [10] was probably the first who noticed that most of the authors of quantum
mechanics books treating the methodological problems concentrated mainly upon the probabilistic
character of quantum-mechanical results. That could be justified at the stage of forming the
probabilistic way of scientific thinking to comprehend the micro-cosm processes. However,
emphasizing the statistical nature of the quantum-mechanical laws often grew into the idea of
uncertainty of the quantum mechanics results, in contrast, for example, to the exact ones of
classical mechanics. This is incorrect. As a matter of fact, just the objects which the quantum-
mechanical principles of identity and discreteness can be applied to are the truly integrable systems
whereas the conventional mechanics, as a rule, describes ergodic systems whose infinitesimal
uncertainty of their initial conditions results in homogeneous filling the phase space (regime of the
strange attractor type). This circumstance has been completely cleared up only in the course of
modern revolution in natural science when applying to physics the results of elaboration of the
nonlinear dynamics mathematical basis. However, in this new context the problem of solids
stability looks somewhat different from what could be considered before. It is important to
emphasize that in this case it could be preserved the meaning of idea that namely the applicability
of quantum-mechanical principles to such microobjects as nuclei, atoms and molecules determines
their stable existence in the capacity of subjects of corresponding sections of physics as a
fundamental science. It is these objects that form the three steps of the Weisskopf “quantum
ladder” [10]. In terms of physics of the alive [9], the fourth step of this ladder is the alive.

As a product of nonlinear thinking, the modern evolutionary outlook shifts the stress from
the statement of the stable systems existence to the problem of their formation and dynamical self-
sustention. In the passage of such systems through the critical (bifurcation) points, owing to an
anomalously high sensivity to the external factors (even of extremely weak intensity) at this instant,
the fluctuation effects give rise to a new ordered phase, often having qualitatively new properties.
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It is especially important to consider the quantum systems which form the quantum ladder
steps from the viewpoint of self-organization. The necessity of such treatment of the alive is
obvious. Considering self-organization of quantum systems of nuclei, atoms and molecules offers
basic scope for uniting physics as a science on a new nonlinear basis. For the time being, there
exist two parallel worldviews in physics, namely the quantum-relativistic and nonlinear (or
synergetical) ones. Such a condition is maintained by the linearity of quantum-mechanical
equations and the fact that the dynamical chaos propagation described within nonlinear dynamics is
confined by the applicability limits of quantum mechanics [11]. However, this situation cannot be
accepted as satisfactory one, since the conceptions of reality within the abovementioned worldviews
are quite different and cannot consistently coexist. Besides, dynamical chaos does not exhaust all
the diversity of nonlinear phenomena. Among these, as the most important ones can be considered
self-organization and self-reproduction of relatively stable structures, hierarchy of dissipative
structures in living organisms in particular. Thus, initiated by physics of the alive, studying the
relationships between synergetics and quantum mechanics is of great importance for the whole
physics.

The present paper is aimed to a considerable degree at the methodological problems of
physics, physics of the alive as well. Our main purpose is to show the connection between the
modern theory of phase transitions and i) the theory of formation of ordered structures
(synergetics) and ii) the quantum theory of dynamically stable systems beyond the self-organization
threshold.

In spite of the fact that the connection between nonequilibrium phase transitions and
dissipative structures is a subject of numerous investigations [3, 5], we believe that there are new
ideas and results based upon applying the fluctuation models to the processes of self-organization.
In the first section of the paper we show how the fluctuation models of self-organization processes
and formation of stable ordered structures can be constructed in accordance with the modern
theory of phase transitions. We briefly discuss the main results of studying of these models.

In the second section we examine an analogy between the renormalization group method
and quantum mechanics. The analogy originates from solving virtually the same Sturm-Liouville
problem of seeking eigenfunctions and eigenvalues [12]. In that way the theory of phase transitions
forms a basis on which it is possible to consider in a new fashion the problem of formation of
stable ordered structures in its connection with the basic principles of quantum mechanics.

SYNERGETICS AND PHASE TRANSITIONS: FLUCTUATION MODELS OF SELF-
ORGANIZATION PROCESSES

In papers [13—16] and monograph [17] new models of the self-organization processes were
proposed and studied. The main idea of the models was to coordinate the initial principles of
model construction and the corresponding equations of motion (kinetic equations) with the
fundamentals of modern physics of phase transitions. Let us note that the known kinetic models of
self-organization (such as “brussellator”, “oregonator”, Girer-Meinhardt’s model, etc.) do not
satisfy this requirement, since they cannot be obtained by making use of the Landau-Ginsburg
Hamiltonian for several interacting order parameters, whereas the new models can. The structure
of the fluctuation models obtained in [13—17] is directly connected with the following form of the
free energy fluctuation part:
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is the Landau-Ginsburg Hamiltonian for the order parameter ¢(x); a,, b, ¢; are coefficients, given
that a; ~ T — T, (T, is critical temperature for the i-th order parameter), 4 is the space
dimensionality, and H,, is the Hamiltonian (free energy) of interaction between two (several) order
parameters.

According to (1-2), the motion equations have the form of the known kinetic equations of
Landau-Ginsburg’s time-dependent theory: '

;i
ot

/ . \
= "rii a;p; + bio + ég |+ DA, (3)
\ D J

One can easily see that motion equations (3) coincide in their form with the Kinetic
equations of reaction-diffusion models widely used in synergetics [5]. Indeed, the nonlinear terms
(those containing ¢° and H,,) assure the feedback (interaction) among the order parameters,
whereas the nonlocal (Ornstein-Zernike) contribution (containing Agp) is responsible for the
diffusion processes (I';C; = D; are diffusion coefficients). Moreover, beyond the phase transition
threshold, when self-organization causes the formation of dynamically stable structures, D = 0 [17],

and, therefore, Eq.(3) does not differ in its form from motion equations in standard synergetic
models

g =—kiq - kok?, (3a)

associated (at k; < 0 and k, > 0) with the Landau-Haken potential and having the limit-cycle
solutions in phase plane [9] (one should bear in mind that in general the interaction Hamiltonian
can be explicitly taken into account during the standard procedure of proceeding from (1) to (3) by
using the methods of calculus of variation.

For definiteness, let us consider a fluctuation model with two interacting order parameters
and nonlinear coupling of the general form

i?t = kV(‘/’l,(/’;z) + D) Agy,
4
% = @1, 0,) + DyAp;,

~vhere ¥(¢,, @) and ©(yp,, ¢) are arbitrary nonlinear functions. Analyzing the type of singular
points according to Poincare’s classification and the stability of stationary solutions ¢;,(x, #) with
respect to small perturbations
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implies examining the characteristic equation
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which gives the dispersion law and relates the damping coefficient 1 to the wave vector k. Here
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In [14—17] a series of statements (theorems) determining the conditions of the emergence of
Hopf's and Turing’s bifurcations was formulated for fluctuation model (4). For example, the
necessary condition of the emergence of uniform-in-volume temporal oscillations reads as the
following inequality for the coefficients of dispersion equation (6):

(E, - Ey)* +4E, <0,
where
2 ) -~
E) = Dik” - 2¥/p,,
Ez = D2k2 - (E/(?ql)z,
Ey = &/ ép, - B dp, .
In the specific case E;, = E, = 0 the periodic limit-cycle solution of model (4) exists for

E;< 0 only.
In [18] a numerical modelling of ordered structures was made for the fluctuation model with

1l

quadruple interaction, i.e., with H,, = a4I¢12(x) (pzz(x)ddx.

_Special attention should be paid to the fact (confirmed by both analytical and numerical
calculations) that the ordering and self-organization within the framework of the considered models
take place beyond the boundary of system’s stability, that is on the nonthermodynamic branch of

states, where the determinant of inverse susceptibilities Det U and/or the determinant of diffusion

coefficients det D change their signs.

Concluding this Section, we should note that in the vicinity of bifurcation points the
diffusion coefficients D; (in the general case — all kinetic coefficients) and the inverse relaxation
times 7;} =T,a; ~ y;' (related to system's susceptibilities y,'s) included in motion equation (3)
cease to be the local functions of spatial coordinates and time. Consistent taking into account this
basic fact needs using the results of papers [19—21] in which the following long-range (in the
vicinity of critical, or bifurcation, points) effects were simultaneously taken into account: i) spatial
nonlocality and “memory™ in the equation of state which are related to the value of the system
anomalous susceptibility y (7,7) to the external factors; ii) spatio-temporal dispersion of the kinetic
coefficients, such as diffusion coefficients D,’s.

Applying the results of papers [19—21] to examining the fluctuation models of self-
organization processes leads to the following equations linearized for quantities dp(k, 7) from (5):
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Here the complete matrix of inverse relaxation times
y 1 y (0) \g ' \ !
Mkt —1)= M (k)o(t - 1)+ N (k,1 - t')

is decomposed into the following matrices: a) M ,}0’ which corresponds to hydrodynamical
equations describing only the nonlocality of the equation of state in the Ornstein-Zernike
approximation; b) A?(k,r— t') which describes the effects of nonlocality and memory in the kinetic
coefficients.

In view of the similarity of Egs.(7) and the time-dependent Schridinger equation it is
convenient to introduce the new variables
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which are the linear combinations of Fourier transforms gk, #'s. This procedure is equivalent to
proceeding to the interaction representation in the quantum field theory and enables us to use the
technique of the perturbation theory to calculate the quantities ¢k, #)’s and, consequently, the
corresponding pair correlation functions G..

As noted in [22] when considering the theoretical basis of morphogenesis, such nonlocal
effects can initiate the break of symmetry and instabilities of Hopf’s and Turing’s types.

PHASE TRANSITIONS AND QUANTUM MECHANICS

The latest advance in physics of phase transitions and critical phenomena has resulted from
employing the concepts and methods of scaling theory [23], with the renormalization group
approach being its macroscopic justification [24]. The renormalization group (RG) transformation
is complex nonlinear transformation, usually applied to the “seed”, or “effective™ Landau-
Ginsburg Hamiltonian H;; (see Eq.(1)). The coefficients a;, b, c¢; subjected to the RG-
transformation are described as the point x4 in so-called parametric space, that is u = {a,-, biyc}.

Within the RG-method framework the pair correlation function of the order parameter
Gy(ryp) = <[¢(fl) ~(p@)][e(R) - (0(F, )>]>

r=If- 7| ®)

(in terms of which, by virtue of the known relations of the condensed matter statistical theory most
of the equilibrium and kinetic properties of substance can be expressed) satisfies the following
equation

Gy(k, u) = s "G, (sk, R, 1) ©)

Here ﬁs is the RG-transformation operator, s is a certain great parameter which is usually related
to the fluctuation correlation radius, 7 is the critical index of anomalous dimensionality of the
correlation function G,. If the point x4 of parametric space is close to the fixed (immovable) point
#* which is invariant under the RG-transformation (}ésy*=y*) and plays the role of a critical
(bifurcation) point, then the following relation takes place:
Rlp=p*+2 1s%e;, (10)
izl

where ¢; and s” are eigenfunctions and eigenvalues of the RG-transformation operator RSL
linearized in the vicinity of the fixed point, and f; is the coefficient of the linear expansion of the
quantity u = u — y* into a series in eigenfunctions ¢;s.

Let us note that the power laws of scalmg theory (scaling laws) are determined by the
greatest positive eigenvalue y; of the operator R , given that y; = 1/v, where v is the critical index
of temperature dependence of the radius of the den51ty fluctuation correlation, namely:

&=4r " (11)
Here &, is the correlation radius amplitude which coincides in the order of magnitude with the
intermolecular interaction radius, r = (T — T,)/ T, — is deviation of temperature T from its value
T in the critical point, and v is the critical index which equals 0.63 for d = 3 in the systems with a
scalar (one-component) order parameter. Other eigenvalues y(i > 2) specify different scaling
corrections (see review [25]), making it possible to extend considerably the applicability limits of

the phase transition theory with respect to the thermodynamic variables (temperature, densxty,
pressure, etc.).
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From all the aforementioned it definitely follows that the methods and mathematical tools
employed in the modern fluctuation theory of phase transitions, on the one hand, and in quantum
mechanics, on the other hand, are very similar, Indeed, both the problem of finding critical indices
like the index v and that of finding the quantum numbers are in essence Sturm-Liouville’s
problems. Moreover, this analogy (see Table) seems to be even closer in view of not only the
common mathematical tools but also the basic symmetry reasons. The very fact of the existence of
quantum numbers and stationary states has appeared as a manifestation of the fundamental
properties of space and time symmetry as well as the processes in the microcosm. The existence of
critical indices and universal commonality of properties pertaining to the systems of completely
different nature displays a new class of symmetry, namely that defined by the renormalization
group transformations. This new type of symmetry turns out to be inherent in all, not only micro-
but also macroscopic, systems in the vicinity of their critical (bifurcation) points. A new phase, new
ordered structures included, emerges in such systems due to fluctuation intcraction which can be
taken into account with use of the RG-method only.

Table
Correspondence between quantum mechanics and physics of phase transitions (synergetics)

Quantum Mechanics Phase Transitions (Synergetics)

Hamiltonian H Linearized RG-operator RSL

Eigenfunctions ‘¥, Eigenfunctions of operator RSL -e

Eigenvalues E, Eigenvalues of operator R- s

Quantum numbers Critical indices

Principal quantum number » Critical index of correlation radius v

Thus, based upon the concepts of scaling and renormalization group, the contemporary
development of the phase transition theory makes it possible
i) to evaluate in a new fashion the validity and profundity of the known principle “via fluctuation
to ordering”;
ii) to give a new interpretation of the steps of the “Weisskopf quantum ladder”.

CHHEPTETHUKA TA ®A30BI TIEPEXOAU — MIIWOM ITO “KBAHTOBUX CXOJAX”

0.B.YAJIUH, 1.C.JOBPOHPABOBA, C.I.CITbKO

AHautizyeTbesi npobiaeMa CHiBBIAHOLIEHb ABOX MIAXOMIB O XMBUX CHUCTEM — CHHEpPreTMKM Ta
KBaHTOBOI MexaHiku. OcoOmBY yBary NpHIUICHO 3arajlLHUM METONOJOTiYHHM acleKTaM y LIMX
MAXOAAX, U0 TPYHTYIOThCH Ha (yHAAMEHTAIBHUX IIeaX Cy4acHOi Teopil ¢a30BHUX IEPEXOiliB.

CHUHEPTETHKA H ®A30BBIE MEPEXO/Ibl — BOCXOXJIEHUE ITO “KBAHTOBOH -
JECTHHLE” :

A.BYAJIBIA, U.C.IOBPCHPABOBA, C.I.CUTHKO

ObcyxneHa mnpobiieMa COOTHOLUEHWUIT Mexay IOByMs IIOAXOJaMM K XXHMBBIM CHMCTEMaM —
CHHEPreTHKON M KBaHTOBOM MexaHUKoM. Ocoboe BHHMaHHE yOeeHO ODILMM METONOJIOTMYECKUM
aclekTaM B 3THX TMOAXONaX, OCHOBAHHBIX Ha (yHIAMEHTAIBHBIX HAEIX COBPEMEHHOM TeopuH
¢a30BBIX ITEPEXONOB.
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